ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD
 (Department of Computer Science)

WARNING

1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Analysis \& Design of Algorithms (3466)
Level: BS (CS)

Semester: Autumn, 2013
Total Marks: 100

ASSIGNMENT No. 1
 Units: (1-4)

Note: All questions are compulsory. Each question carries equal marks.
Q. 1 a) Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of the following conjectures;
a. $\quad \mathrm{f}(\mathrm{n})=\theta(\mathrm{f}(\mathrm{n} / 2))$
b. $\quad \mathrm{f}(\mathrm{n})=\mathrm{O}\left((\mathrm{f}(\mathrm{n}))^{2}\right)$
c. $\quad \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ implies $\mathrm{g}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))$
b) Prove that $\operatorname{Pr}\{\mathrm{A} \mid \mathrm{B}\}+\operatorname{Pr}\{\bar{A} \mid \mathrm{B}\}=1$.
Q. 2 a) Give examples of relations that are:
a. Reflexive and symmetric but not transitive
b. Reflexive and transitive but not symmetric
c. Symmetric and transitive but not reflexive
b) Illustrate the operation of counting sort on the array $\mathrm{A}=[6,0,2,0,1,3,4,6$, $1,3,2]$.
Q. 3 a) Let A and B be finite sets, and $f: A \rightarrow B$ be a function. Show that:
a. If f is injective, then $|A| \leq|B|$
b. If f is surjective, then $|A| \geq|B|$
b) Show that any connected, undirected graph $G=(V, E)$ satisfies $|E| \geq|V|-1$.
Q. 4 a) Illustrate the operation of Heap sort on the array $\mathrm{A}=[5,13,2,25,7,17,20,8,4]$.
b) What is the running time of heap sort on an array A of length n that is already sorted in increasing order? What about decreasing order?
Q. 5 Write notes on the following topics:

- Graph and trees
- Radix and Bucket Sort
- Counting and Probability
- Lower bounds for sorting

ASSIGNMENT No. 2

Units: (5-8)
Total Marks: 100
Note: All questions are compulsory. Each question carries equal marks.
Q. 1 Give and explain each step with graph example for the trace of following graph traversal algorithms.
a) Breadth first search
b) Depth first search
Q. 2 a) Demonstrate the insertion of the keys $5,28,19,15,20,33,12,17,10$ into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 9$.
b) For the set of keys $\{1,4,5,10,16,17,21\}$, draw binary search trees of height $2,3,4,5$, and 6 .
Q. 3 a) Prove that the fractional knapsack problem has the greedy-choice property.
b) What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$
\mathrm{a}: 1 \mathrm{~b}: 1 \mathrm{c}: 2 \mathrm{~d}: 3 \mathrm{e}: 5 \mathrm{f}: 8 \mathrm{~g}: 13 \mathrm{~h}: 21
$$

Q. 4 Execute the following algorithms for the given graph. Analyze the difference between the order of nodes or edges visited for the two algorithms.
a) Prim's algorithm
b) Kruskal's algorithm

Q. 5 Write notes on the following topics:

- Huffman Codes
- Breadth first search
- Binary Search Trees
- Optimal Polygon Triangulation

Analysis and Design of Algorithm (3466/3503) Credit Hours: 3(3+0)

Recommended Book:

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

Course Outlines:

Unit No.1: Introduction

Introduction to Algorithm Analysis and Design
Growth of Functions, Summations Formulas and Properties
Unit No.2: Recurrences and Sets
Substitution, Iteration and Master Methods
Sets, Relations, Functions, Graph and Trees, Counting and Probability
Unit No.3: Sorting Algorithms
Heaps, Maintaining the Heap Property, Heap Sort algorithm,
Quick Sort, Performance and Analysis of Quick Sort
Unit No.4: \quad Sorting in Linear Time and Order Statistics
Lower bounds for sorting, Counting sort, Radix and Bucket Sort, Medians and order Statistics

Unit No.5: Elementary Data Structures
Analysis of Stack, Queues and Linked List Algorithms, Hash Table and Functions, Binary Search Trees

Unit No.6: Dynamic Programming
Matrix Chain Multiplication, Longest Common Subsequence, Optimal Polygon Triangulation

Unit No.7: Greedy Algorithms
An activity selection problem, Huffman Codes, A Task Scheduling Problem, Amortized Analysis

Unit No.8: Graph Algorithms

Elementary Graph Algorithms, Breadth first search, Depth first search, Minimum Spanning Trees

Unit No.9: Single Source Shortest Paths

Shortest Paths and Relaxation, Dijkstra's Algorithm, The Bellman-Ford Algorithm, Introduction to NP-Completeness

